
User's Manual
AudioCodes Voice.AI Solutions

Voca Interaction Center
Flow Designer

Cloud-Based & On-Premises
Applications

Version 11

Notice Voca | User's Manual

Notice

Information contained in this document is believed to be accurate and reliable at the time
of printing. However, due to ongoing product improvements and revisions, AudioCodes
cannot guarantee accuracy of printed material after the Date Published nor can it accept
responsibility for errors or omissions. Updates to this document can be downloaded
from https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: July-03-2024

Security Vulnerabilities
All security vulnerabilities should be reported to vulnerability@audiocodes.com.

Customer Support
Customer technical support and services are provided by AudioCodes or by an authorized
AudioCodes Service Partner. For more information on how to buy technical support for
AudioCodes products and for contact information, please visit our website at
https://www.audiocodes.com/services-support/maintenance-and-support.

Documentation Feedback
AudioCodes continually strives to produce high quality documentation. If you have any
comments (suggestions or errors) regarding this document, please fill out the Documentation
Feedback form on our website at https://online.audiocodes.com/documentation-feedback.

Stay in the Loop with AudioCodes

Related Documentation

Document Name

Voca Administrator's Guide

Voca Release Notes

- ii -

https://www.audiocodes.com/library/technical-documents
mailto:vulnerability@audiocodes.com
https://www.audiocodes.com/services-support/maintenance-and-support
https://online.audiocodes.com/documentation-feedback
http://www.twitter.com/audiocodes
http://www.facebook.com/audiocodes
http://www.linkedin.com/companies/audiocodes
https://www.youtube.com/c/AudioCodesMedia
http://blog.audiocodes.com/
https://techdocs.audiocodes.com/ac-voca/administrators-guide/version-11
https://techdocs.audiocodes.com/ac-voca/release-notes/version-11/

Notice Voca | User's Manual

Document Revision Record

LTRT Description

12991 Initial document release for Version 11

The latest software versions can be downloaded from AudioCodes' Services Portal
(registered Customers only) at https://services.audiocodes.com.

- iii -

https://services.audiocodes.com/

Content Voca | User's Manual

Table of Contents

1 Introduction 1
2 Accessing Flow Designer 2

Adding a New Flow 2
Editing a Flow 3
Deleting a Flow 5

3 Variable Syntax 6
Predefined Variables 6

4 Expressions 7
Arithmetic 7
String 7
Boolean 7

5 Supported Functions 9
Contains 9
Date 10
DateConvert 10
DateParse 11
GetJsonValue 11
Length 12
Lower 13
Now 13
NowUtc 13
Replace 14
SubString 14
Trim 15
Upper 15
WeekDay 16

6 Building Blocks 17
Interactions 17

Speech Input 18
DTMFMenu 23

Without Speech 23
With Speech 25

Collect Digits 28
Play Prompt 32
Text-to-Speech 34

Actions 36
HTTP 36
Go To Menu 43
Transfer 44

- iv -

Content Voca | User's Manual

Worker Application 46
Go To Queue 47
Go To Destination 48
Go To Contact 51
Leave Message 53
Send SMS 54
Go To Flow 55

Call-Flow Logic 56
Conditions 56
Switch 58
Counter 59
Set Variable 60
End 61

7 Save 63
8 Search 64

- v -

CHAPTER 1 Introduction Voca | User's Manual

1 Introduction
The purpose of this document is to familiarize Voca Administrators with the new Voca Flow
Designer, which offers a new way to configure, design, and manage complex call flows. The
Flow Designer provides a rich and powerful set of building blocks empowering users to create
their own call flow scenarios.

- 1 -

CHAPTER 2 Accessing Flow Designer Voca | User's Manual

2 Accessing Flow Designer
The Flow Designer page in the Voca application offers a way to configure, design, and manage
complex call flows using a powerful set of building blocks.

➢ To access the Flow Designer:

1. Log in to the Voca application.

2. From the Navigation pane, click Flow Designer; the Flow Designer page opens:

3. Select the flow that you want to edit, by clicking the corresponding plus box; the Edit link
appears under the selected script:

4. Click Edit; the main flow designer workspace appears:

Adding a New Flow
The procedure below describes how to add a new flow.

- 2 -

CHAPTER 2 Accessing Flow Designer Voca | User's Manual

➢ To add a new flow:

1. From the Navigation pane, click Flow Designer; the Flow Designer page opens:

2. Click Add New; the following appears:

3. In the 'Flow Name' field, enter the name of the flow.

4. In the 'Version' field, enter the number of the version applicable to the flow.

5. Select the 'Staging' check box if the flow is still being developed.

6. Select the 'Published' check box if the flow has been completed and published.

7. In the 'Description' field, enter a description of the flow.

8. Click OK.

Editing a Flow
The procedure below describes how to edit a flow.

➢ To edit a flow:

1. From the Navigation pane, click Flow Designer; the Flow Designer page opens:

2. Select the flow you want to edit by enabling the Flow Name check box.

- 3 -

CHAPTER 2 Accessing Flow Designer Voca | User's Manual

3. From the ‘Actions’ drop-down menu, choose Edit; the following appears:

4. It is possible to have more than one flow – for example, you can have one flow for Staging
(in development), and one flow for Published (completed flow).

To duplicate the flow, click the button; the following appears:

Only one flow can be set to Published.

5. Click the delete icon to remove a duplicate flow.

6. Click OK.

7. On the Flow Designer page, select the flow entry you want to expand by clicking plus.

8. Select the flow you want to edit.

- 4 -

CHAPTER 2 Accessing Flow Designer Voca | User's Manual

Deleting a Flow
The procedure below describes how to delete a flow.

➢ To delete a flow:

1. From the Navigation pane, click Flow Designer; the Flow Designer page opens:

2. Select the flow you want to delete by enabling the ‘Flow Name’ check box.

3. From the ‘Actions’ drop-down menu, choose Delete; a message appears to confirm that
you want to delete the selected flow.

4. Click OK.

- 5 -

CHAPTER 3 Variable Syntax Voca | User's Manual

3 Variable Syntax
The Flow Designer uses variables to store values collected or calculated during the call flow.
Variable syntax across the Flow Designer should be in the following format:

${var_name}

The above syntax should be used when setting and reading from a variable and when using
functions.

Variable name rules:

■ Alphanumeric

■ Underscore ‘_’

■ Must start with a letter

■ Case sensitive

■ Maximum length of 24 characters

Predefined Variables
The following are predefined variables. If specific attributes are passed to the script, they can
be accessed in the same way.

■ ${CLI} – Caller Line Identification

■ ${DNIS} – Incoming call DNIS

■ ${Call_ID} – Call Identification

■ ${asrSessionId} – Stores the content of the header called X-ASRCall-Session-ID from the
upcoming invite to Voca.

- 6 -

CHAPTER 4 Expressions Voca | User's Manual

4 Expressions
The Flow Designer uses expressions as part of the building blocks. The following are different
types of expressions that you can use:

■ Arithmetic

■ String

■ Boolean

Arithmetic
You can enter expressions like:

■ Adding numbers: 30 + 25.4

■ Context variables: ${ticketPrice} * ${tax}

Arithmetic expressions can be applied for any arithmetic operation.

String
■ You can use strings in expressions, for example, by using a Play Prompt\ Text-to-Speech to

create the following text-to-speech prompt:

"The name of the show you have selected is " + ${selectedShow}

■ You can use strings in expressions, for example, by using a Play Prompt\Text-to-Speech to
create the following text-to-speech prompt with two results:

"The name of the show you have selected is " + ${selectedShow}
+ "and the price for the ticket will be " + ${ticketPrice}

Boolean
In the Conditions block, you need to enter an expression that produces a Boolean result. For
example:

■ ${ticketPrice} > 30

■ ${selectedShow} == "Friends"

■ ${selectedShow} == "Friends" && ${ticketType} == "VIP"

■ ${selectedShow} == "Friends" || ${selectedShow} == "Chernobyl"

■ ${ticketPrice} >= 30 || ${ticketPrice} <= 30

Voca supports the following Boolean operators:

■ Greater / less than:

● >

- 7 -

file:///C:/Users/danielleb/OneDrive - AudioCodes Ltd/Documents/FlowD.docx#_bookmark7
file:///C:/Users/danielleb/OneDrive - AudioCodes Ltd/Documents/FlowD.docx#_bookmark9

CHAPTER 4 Expressions Voca | User's Manual

● <

■ Greater / less than or equals to:

● >=

● <=

■ Equals / not equals:

● ==

● !=

- 8 -

CHAPTER 5 Supported Functions Voca | User's Manual

5 Supported Functions
The following are different types of supported functions that can be used:

■ Contains below

■ Date on the next page

■ DateConvert on the next page

■ DateParse on page 11

■ GetJsonValue on page 11

■ Length on page 12

■ Lower on page 13

■ Now on page 13

■ NowUtc on page 13

■ Replace on page 14

■ SubString on page 14

■ Trim on page 15

■ Upper on page 15

■ WeekDay on page 16

Contains
The Contains function is used to determine the presence of a specific search text within a
source text string. If the search text is found within the source text, the function returns 'True';
otherwise, it returns 'False.' The Contains function is case-sensitive. This means the search
treats upper and lowercase letters differently. Be aware of case sensitivity when utilizing this
function as it can impact the results based on the letter casing of the text being examined.

Syntax

Contains(source text string, search text string)

Example

Contains("Flight to New York","New York") -> returns 'True'

Contains("Flight to New York","NEW YORK") -> returns 'False'

- 9 -

CHAPTER 5 Supported Functions Voca | User's Manual

Date
The Date function is used for manipulating dates and times. It receives a text string as input and
returns it as a date object using the format 'mm/dd/yyyy hh:mm:ss tt', representing
month/day/year, and time in a 12-hour clock format. The function also includes robust error
handling, returning NULL for non- string inputs or when encountering parsing issues. This
ensures reliable and predictable behavior even with unexpected input. If no date is provided, it
defaults to returning the current time with the current date.

Syntax

Date(text string)

Example

Date("08/24/2023 16:22:53") -> returns '08/24/2023 4:22:53 PM'

Date("2023-08-24T04 :22 :53.53") -> returns '08/24/2023 4:22:53
AM'

Date("2023-08-25T00 :00 :00") -> returns '08/25/2023 12:00:00 AM'

Date("Monday, 24 August 2023") -> returns '08/24/2023 12:00:00
AM'

Date("08/24/2023") -> returns '08/24/2023 12:00:00 AM'

Date("16 :33 :44") -> returns '08/24/2023 4:33:44 PM'

DateConvert
The DateConvert function receives two inputs: a date/time string, and a the desired output
date\time format. The function converts the input string to the requested format and returns
the new string in the specified format.

If the provided input is not a valid string, or if the converting process fails (for example, the text
is not in a valid date format), the function returns NULL.

Syntax

DateConvert (date/time text string, requested output date/time
format text string)

Example

DateConvert("09/03/2023","dd/MM/yyyy")-> returns '03/09/2023'

DateConvert("09/03/2023","dddd, dd MMMM yyyy")-> returns 'Sunday,
03 September 2023'

- 10 -

CHAPTER 5 Supported Functions Voca | User's Manual

DateConvert ("09/03/2023 03:45:00 PM","yyyy- MM- ddTHH:mm:ss")- >
returns '2023-09-03T15:45:00'

DateConvert("16:53:00","hh:mm tt")-> returns '04:53 PM'

DateParse
The DateParse function manipulates date objects. It receives two key parameters: a date object
and a date format string. This function transforms the input date object to a customized date
representation based on the provided format string, returning it as a string. If input errors
occur, such as incompatible date formats, it returns NULL, ensuring dependable behavior.

Syntax

DateParse(date object, requested date format)

Example

If there is a ‘date‘ variable saved with the value of “08/24/2023 4:22:53 PM”, the function
returns:

DateParse (${date},"dd/MM/yyyy") - > returns '24/08/2023'

GetJsonValue
The GetJsonValue function receives two input parameters: a JSON object, and a string
specifying the desired path within the JSON. This function takes the provided JSON and
attempts to retrieve the value located at the specified path. If the path exists and a valid value
is found, the function returns that value. However, if the path cannot be found, or if any parsing
errors occur during the process (e.g., invalid JSON syntax), the function returns NULL as a result.
This ensures safe handling of input data and provides a consistent response when encountering
issues with the JSON structure or path.

Syntax

GetJsonValue(JSON Object, JSON path string)

Example

Assuming we have the following JSON that is saved in the context under the variable name
‘studentsList’:

{
 "name": "John Doe",
 "age": 30,
 "still.student": false,
 "address": {

- 11 -

CHAPTER 5 Supported Functions Voca | User's Manual

 "street": "123 Main Street",
 "city": "Anytown",
 "state": "CA"
 },
 "friends": [{
 "name": "Alice",
 "age": 28
 },

{
 "name": "Bob",
 "age": 32
 }
]
}

To get the value from the key that called "name", use the function as follows:

GetJsonValue(${studentsList},"name")-> returns 'Jhon Doe'

To get the value from the key that called "city", use the function as follows:

GetJsonValue(${studentsList},"address.city")-> returns 'Anytown'

To get the value from the key that called "age" that associated to Alice, use the function as
follows:

GetJsonValue(${studentsList},"friends[0].age")-> returns '28'

To get the value from the key that called "still.student", use the function as follows:

GetJsonValue(${studentsList},"[still.student]")-> returns 'false'

Length
The Length function receives a single text string as input and returns an integer value
representing the length of that string. If the input string is empty, the function will return '0'.
This ensures consistent behavior and provides a convenient way to determine the length of text
while handling empty strings gracefully. If the input is not a string type, or if any issues arise
during the length calculation, the function returns NULL, ensuring reliability and predictability in
its output.

Syntax

Length(string text)

Example

Length("Voca") -> returns '4'

Length("New York") -> returns '8'

- 12 -

CHAPTER 5 Supported Functions Voca | User's Manual

Lower
The Lower function works with text strings. It receives a single text string as input and returns
all the characters within it to lowercase. If the provided input is not of string type or if any
issues arise during the lowercase converting process, the function will return NULL. This robust
error handling ensures a reliable and predictable response even in cases of unexpected input or
converting challenges.

Syntax

Lower(text string)

Example

Lower("New York") -> returns "new york"

Now
The Now function returns the current date and time in a specific tenant time zone as a date
object, represented as 'MM/dd/yyyy hh:mm:ss tt'. It provides accurate timestamping and
handles unexpected errors by returning NULL when issues arise during the process.

Syntax

Now()

Example Usage

Now()

NowUtc
The ‘NowUtc’ function returns the current date and time in a UTC time zone as a date object,
represented as 'MM/dd/yyyy hh:mm:ss tt.' It provides accurate timestamping and handles
unexpected errors by returning NULL when issues arise during the process.

Syntax

NowUtc()

Example

NowUtc()

- 13 -

CHAPTER 5 Supported Functions Voca | User's Manual

Replace
The Replace function manipulates text strings by allowing users to replace specific characters or
substrings. The Replace function operates in a case-sensitive manner. With its intuitive syntax
and dynamic input options, the Replace function empowers users to enhance productivity and
streamline data processing workflows effectively.

Syntax

Replace(Source text string, Old text string, New text string)

Example

Replace("I like bananas", "bananas", "apple") -> returns "I like
apples"

SubString
The SubString function allows you to manipulate and extract specific portions of text or
characters from a larger string of content.

The substring function can work in two different ways:

■ When provided with a string text, a start index (an integer), and an optional length (also an
integer), it returns a portion of the string text that starts at the specified start index and
extends for the given length, if provided.

■ If the length is not provided, the function returns the portion of the string text from the
start index to the end of the text.

The SubString function ensures reliability and predictability by returning NULL in the following
scenarios:

■ If the provided input text is not of string type.

■ If the start index is equal to or greater than the length of the provided text, indicating an
invalid starting point.

Syntax

SubString(string text, integer start index)

SubString(string text, integer start index, integer length)

Example

SubString("How are you?",8) -> "you?"

SubString("How are you?",4,3) -> "are"

- 14 -

CHAPTER 5 Supported Functions Voca | User's Manual

Given that there is a ‘text’ variable saved in the context with the value of “How are you”, you
can also use the function as follows:

SubString(${text},8) -> "you?"

SubString(${text},4,3) -> "are"

Trim
The Trim function is used for text manipulation, enabling the removal of spaces from a given
text string. It accommodates both a text string and an optional direction as input parameters,
allowing users to precisely control the trimming process. When executed, this function returns
a modified version of the input text, with spaces eliminated according to the specified direction.
If no direction is explicitly provided, the default behavior is to remove all spaces ('ALL'):

■ LEFT

■ RIGHT

■ ALL

Syntax

Trim(string text, string direction)

Example

Trim(" My name is? ","LEFT")-> returns 'My name is? '

Trim(" My name is? ","RIGHT")-> returns ' My name is?'

Trim(" My name is? ","ALL")-> returns 'My name is?'

Trim(" My name is? ","")-> returns 'My name is?'

Upper
The Upper function works with text strings. It receives a single text string as input and
transforms all the characters within it to uppercase. If the provided input is not of string type or
if any issues arise during the uppercase converting process, the function will return NULL. This
robust error handling ensures a reliable and predictable response even in cases of unexpected
input or converting challenges.

Syntax

Upper(string text)

Example

Upper("New York") -> returns 'NEW YORK'

- 15 -

CHAPTER 5 Supported Functions Voca | User's Manual

WeekDay
The WeekDay function is used to determine the day of the week corresponding to a given date.
It accepts a date object as input and returns the corresponding day as an integer (0 for Sunday
to 6 for Saturday). Robust error handling is in place to ensure reliability, with the function
returning NULL if the input is not a date object or if any issues arise during the converting
process.

Syntax

WeekDay(Date date)

Example

WeekDay(NowUtc())

WeekDay(Date("09/03/2023")) -> returns '0'

WeekDay(Date("09/15/2023")) -> returns '5'

- 16 -

CHAPTER 6 Building Blocks Voca | User's Manual

6 Building Blocks
Use the following building blocks to create the call flow logic:

■ Interactions below

■ Actions on page 36

■ Call-Flow Logic on page 56

You can connect the building blocks by placing the cursor on the output leg, and then dragging
the connector to the appropriate actions.

➢ To add a building block to the flow designer:

1. From the left bar, click the appropriate building block; the selected building block appears
on the flow designer workspace.

2. Drag the building block to the desired position on the flow designer workspace.

3. Drag the relevant nodes to each appropriate building block, to connect the flow.

Interactions
The following building blocks appear under Interactions.

■ Speech Input

■ DTMF Menu

■ Collect Digits

■ Play Prompt

■ Text-to-Speech

- 17 -

CHAPTER 6 Building Blocks Voca | User's Manual

Speech Input

The 'Speech Input' building block seamlessly integrates speech recognition into your system,
enabling callers to engage in natural interactions through spoken commands. During the Speech
Recognition step, it not only interprets spoken input but also allows it to be mapped to
variables. These variables can then later be leveraged to route calls based on their values. This
significantly enhances user experience by facilitating intuitive voice-driven interactions, thereby
improving the accessibility and efficiency of menu navigation and selections.

There are two results when routing a call with the 'Speech Input' building block, depending on
how well it understands your voice command.

■ Next Node: If the system understands the voice command enough (confidence is above the
threshold), it will automatically send your call to the next step.

■ No Match: If the system can't understand your voice command clearly (confidence is below
the threshold), it will send your call to a different step called "No Match."

➢ To use the Speech Input building block:

1. On the left pane, under Interactions, click the Speech Input option; the following Speech
Input building block appears:

2. Click the icon; the following appears:

- 18 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Speech Input Mode' drop-down list, select the preferred mode:

● Free Speech: The system records the caller's input and then checks the confidence
score. If the confidence score is below the preconfigured threshold (by default
configured '0'), the system activates 'No Match'.

● Keywords: The system records the caller's input and then cross-references it with a
predefined list of up to 50 phrases that can be configured in the building block. The
caller's speech is checked against this list, aiming to identify the phrase with the
highest confidence score. If the confidence score is below the preconfigured threshold
(by default configured '0'), the system activates 'No Match'.

When selecting this mode, an additional field, ‘Keywords*’, becomes available.

● Digits: The system records the caller's input and subsequently attempts to convert this
input into a numerical character. If the Automatic Speech Recognition (ASR) result
cannot be successfully converted into a numerical character, or if the confidence score
falls below the pre-configured threshold (by default configured '0'), the system
activates 'No Match'.

When selected, an additional field called ‘Min Digits’ and ‘Max Digits’ become
available. Enter the minimum and the maximum length of the digits that the caller can
input.

- 19 -

CHAPTER 6 Building Blocks Voca | User's Manual

This mode is currently in the Beta phase and is exclusively available for the EN-US
dialect.

● Alpha-Numeric: The system records the caller's input and subsequently attempts to
convert this input into an alphabetical and numerical character. If the Automatic
Speech Recognition (ASR) result cannot be successfully converted into an alphabetical
and numerical character, or if the confidence score falls below the pre-configured
threshold (by default configured '0'), the system activates 'No Match'.

◆ When selected, an additional field called ‘Alpha-Numeric Pattern’ becomes
available. Define both the length and sequence of the alphanumeric pattern you
expect to receive. The syntax for available patterns includes:

◆ '\s' – Indicates an expectation for an alphabetical character.

◆ '\d' – Indicates an expectation for a numeric character.

◆ '\a' – Indicates an expectation for an alphabetical or numerical character.

Example:

Note this pattern: \s\s\d\d\d\a. This signifies that you anticipate a response with a
length of 6 characters, starting with 2 numeric characters, followed by 3 alphabetical
characters, and ending with one alphabetical or numerical character. Any other
response will be categorized as a "No Match". This allows you to set exactly what
format you expect the input to be in.

This mode is currently in the Beta phase and is exclusively available for the EN-US
dialect.

● Date: The system records the caller's input and subsequently attempts to convert this
input into a date with the following format: 'yyyy-MM-dd'. If the Automatic Speech
Recognition (ASR) result cannot be successfully converted into a date, or if the
confidence score falls below the pre-configured threshold (by default configured '0'),
the system activates 'No Match'.

When selected, an additional field called ‘Hint’ becomes available. This field allows you
to specify whether the system-generated date should be in the past, or in the future, in
the event that the customer does not mention the year.

This mode is currently in the Beta phase and is exclusively available for the EN-US
dialect.

- 20 -

CHAPTER 6 Building Blocks Voca | User's Manual

● Credit Card Number: The system records the caller's input and utilizes an algorithm to
verify the accuracy of the identification number provided by the caller. If the system
confirms the identification number as correct, it proceeds to the 'Next Node'. However,
if the system detects an incorrect identification number, or if the confidence score falls
below the pre-configured threshold (by default configured '0'), the system activates
'No Match'.

The result destination information is returned in JSON format, encompassing all the
relevant details associated with the selected destination.

● Credit Card Expiration Date: The system records the caller's input and utilizes an
algorithm to verify the credit card expiration date provided by the caller. If the system
confirms the credit card expiration date as correct, it proceeds to the 'Next Node'.
However, if the system detects an incorrect identification number, or if the confidence
score falls below the pre-configured threshold (by default configured '0'), the system
activates 'No Match'.

● Destination Dictionary: The system records the caller's input and proceeds to compare
it with a designated destination dictionary (contact/department list).

It analyzes the caller's spoken input against this dictionary, aiming to identify the
phrase with the highest confidence score. In cases where the confidence score falls
below the pre-configured threshold (by default configured '0'), the system activates
the 'No Match' state.

When activated, an additional parameter called ‘Destination Dictionary’ becomes
available. This parameter allows the users to specify the dictionary against which they
want to perform the comparison.

The result destination information is returned in JSON format, encompassing all the
relevant details associated with the selected destination.

JSON format (for Department):

"Destination Name": {
 "EntityID":"",
 "Type":"DESTINATION",

"Recording":"",
"Destination":"",

 "AliasPrompt":"",
 "Extension1":"",
 "Extension2":"",
 "Extension3":""

}

JSON format (for Contact):

- 21 -

CHAPTER 6 Building Blocks Voca | User's Manual

"Contact": {
 "EntityID":"",
 "Type":" CONTACT",

"Recording":"",
" FN":"",

 " LN":"",
 "Extension":"",
 "Mobile":"",
 "Dect":""

}

5. Enable the 'Speech Barge-In' feature by selecting the checkbox. Activating this option
grants callers the ability to interrupt the prompt mid-way using speech, eliminating the
necessity to wait for the prompt to finish.

6. From the 'Prompt Type' drop-down list, select the appropriate prompt type:

● User Prompt: Gives you the capability to designate a specific fixed prompt that will
unfailingly play whenever a call is directed through the Speech Input building block.

When selected, an additional field called "Prompt" becomes available. This field allows
you to specify the prompt you want to utilize when the call is routed through the
Speech Input building block.

● Dynamic Prompt: By using this prompt type, you gain the flexibility to dynamically
adjust the prompt based on previous actions taken by the caller within the flow. When
selected, an additional field called "Value" becomes available. This field allows you to
specify the name of your prompt as it appears in the system prompt list, using a
variable.

If the specified prompt is not found, the system pauses briefly before continuing to the
next step.

Example:

If you have a single flow that can be triggered from different DID numbers, and you want to
change the prompt based on the dialed number. To do this, configure a “Conditions”
building block (see Conditions building block for more information) before running the
Speech Input building block. This condition block checks the DID number and routes the call
to the 'Set Variables' building block accordingly (see Set Variable building block for more
information). The 'Set Variables' block stores the prompt name. This variable can then be
used to play distinct prompts for different DID numbers, providing dynamic caller
experiences.

7. In the 'Confidence Threshold' field, you can configure the threshold for confidence. Calls
falling below this confidence threshold are routed to 'No Match'. By default, this field has
the value of '0'.

- 22 -

CHAPTER 6 Building Blocks Voca | User's Manual

8. Enable the 'Play Beep' option by selecting the corresponding check box. This triggers the
playing of a beep sound before the system begins to collect the user's response.

9. In the 'Recognition Result' field, specify a variable in the format ${var_name} to store the
speech input result. If the call is routed to 'No Match', the system automatically replaces
the recognition result with "No Match".

10. In the 'Transcription Result' field, specify a variable in the format ${var_name} to store the
original speech input result before the system processing takes place. This variable allows
you to access the original speech input content, even if the call is routed to 'No Match'.

11. In the 'Confidence Result' field, define a variable in the format ${var_name} to capture the
confidence score identified by the Automatic Speech Recognition (ASR) system. This score
can be utilized later to inform decision-making based on the obtained result.

12. Click OK, and then Save.

DTMF Menu

The 'DTMF Menu' building block empowers you to offer callers a menu of choices. As an admin,
you have the flexibility to select from two input methods tailored to your users' preferences
and needs:

■ DTMF: The DTMF method exclusively employs DTMF (Dual-Tone Multi-Frequency) input,
providing callers with a specific interaction mode that does not include the option to utilize
ASR (Automatic Speech Recognition).

■ DTMF with Speech: The DTMF and Speech method offers callers a versatile communication
experience, providing two distinct options for interaction. Callers can choose to use DTMF
(Dual-Tone Multi-Frequency) input, allowing them to enter information or make selections
using the keypad on their phone. Alternatively, callers can take advantage of the ASR
(Automatic Speech Recognition) capability, enabling them to interact with the system by
speaking naturally. This flexibility empowers callers to engage with the system in the
manner that best suits their preferences and needs.

Without Speech

The 'DTMF Menu' building block has 2 exit legs:

■ Failure: Indicates when the system recognizes a DTMF key that is not configured as an
option on the menu, and the maximum number of retries has been reached.

■ Timeout: Indicates when the system fails to recognize any DTMF input and the maximum
number of retries has been reached.

➢ To use the DTMF Menu building block without speech method:

1. On the left pane, under Interactions, click DTMF Menu; the following DTMF Menu building
block appears:

- 23 -

CHAPTER 6 Building Blocks Voca | User's Manual

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description of this building block (up to 50 characters).

4. In the 'Input Method' select 'DTMF'.

5. From the 'Prompt Type' drop-down list, select the appropriate prompt type:

● User Prompt: Gives you the capability to designate a specific fixed prompt that will
unfailingly play whenever a call is directed through the Speech Input building block.

When selected, an additional field named "Prompt" becomes available. This field
allows you to specify the prompt you want to utilize when the call is routed through
the Speech Input building block.

● Dynamic Prompt: Gives you the flexibility to dynamically adjust the prompt based on
previous actions taken by the caller within the flow. When selected, an additional field
called "Value" becomes available. This field allows you to specify the name of your
prompt as it appears in the system prompt list, using a variable.

- 24 -

CHAPTER 6 Building Blocks Voca | User's Manual

If the specified prompt is not found, the following message appears: "We are
experiencing system issues. Please call back later." The call will then be
disconnected.

Example

If you have a single flow that can be triggered from different DID numbers, and you want to
change the prompt based on the dialed number. To do this, configure a “Conditions”
building block (see Conditions building block for more information) before running the
Speech Input building block. This condition block will check the DID number and route the
call to the 'Set Variables' building block accordingly (see Set Variable building block for
more information). The 'Set Variables' block stores the prompt name. This variable can
then be used to play distinct prompts for different DID numbers, providing dynamic caller
experiences.

6. In the Digits section, select the specific digits you want to include in the DTMF menu.
Available options range from 0 through 9, *, and #.

Each digit you select is automatically added as an exit leg.

7. In the 'Max Wait Time' field, enter the maximum waiting time for user input, between 1 to
45 seconds. The default is 20 seconds.

8. In the 'Retries' field, specify the maximum number of retries to repeat the block if DTMF
input is not detected. You can set this value between 1 and 10. The default is 3 retries.

9. Click OK, and then Save.

With Speech

The DTMF Menu building block has 3 exit legs:

■ Failure: When the system recognizes a DTMF key that is not configured as an option on the
menu, and the maximum number of retries has been reached.

■ Timeout: When the system fails to recognize input from the caller, whether it's DTMF or
speech, and the maximum number of allowed retries has been reached.

■ No Match: When the confidence result of the speech recognition is '0', the system will
route the call to 'No Match'.

➢ To use the DTMF Menu building block with speech method:

1. On the left pane, under Interactions, click DTMF Menu; the following DTMF Menu building
block appears:

- 25 -

CHAPTER 6 Building Blocks Voca | User's Manual

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block, (up to 50 characters).

4. In the 'Input Method' change to 'DTMF and Speech'; the following appears:

- 26 -

CHAPTER 6 Building Blocks Voca | User's Manual

5. You can enable 'Speech Barge-In' by selecting the corresponding checkbox. Activating this
option grants callers the ability to interrupt the prompt mid-way using either speech or
DTMF input, eliminating the necessity to wait for the prompt to finish.

6. From the 'Prompt Type' drop-down list, select the appropriate prompt type:

● User Prompt: Gives you the capability to designate a specific fixed prompt that will
unfailingly play whenever a call is directed through the Speech Input building block.
When selected, an additional field called ‘Prompt’ becomes available. This field allows
you to specify the prompt you want to utilize when the call is routed through the
Speech Input building block.

● Dynamic Prompt: Gives you the flexibility to dynamically adjust the prompt based on
previous actions taken by the caller within the flow. When selected, an additional field
called "Value" becomes available. This field allows you to specify the name of your
prompt as it appears in the system prompt list, using a variable.

If the specified prompt is not found, the following message appears: "We are
experiencing system issues. Please call back later." The call will then be
disconnected.

- 27 -

CHAPTER 6 Building Blocks Voca | User's Manual

Example

If a single flow that can be triggered from different DID numbers, and you want to change
the prompt based on the dialed number. To do this, configure a “Conditions” building block
(see Conditions building block for more information) before running the Speech Input
building block. This condition block will check the DID number and route the call to the 'Set
Variables' building block accordingly (see Set Variable building block for more information).
The 'Set Variables' block stores the prompt name. This variable can then be used to play
distinct prompts for different DID numbers, providing dynamic caller experiences.

7. In the Digits/Keywords section, customize the DTMF menu by selecting the digits (0-9, *,
and #) and associating keywords with each digit. This feature enables callers to either press
the specified digit or verbally say the associated keyword, directing them through the
corresponding digit leg.

To add a new keyword, enter the keyword name and then press enter.

8. In the 'Max Wait Time' field, enter the maximum waiting time for user input, between 1 to
45 seconds. The default is 20 seconds.

The Automatic Speech Recognition (ASR) system can record audio for a maximum of
1 minute. If the combined length of the prompt and the maximum wait time exceeds
one minute, the system will proceed to the next building block after the one-minute
mark.

9. In the 'Retries' field, specify the maximum number of retries to repeat the block if DTMF
input is not detected. You can set this value between 1 and 10. The default is 3 retries.

10. In the 'Recognition Result' field, specify a variable in the format ${var_name} to store the
speech input/DTMF key result. If the call is routed to 'No Match', the system automatically
replaces the recognition result with "No Match."

11. In the 'Transcription Result' field, specify a variable in the format ${var_name} to store the
original speech input result before any system processing takes place. This variable allows
you to access the original speech input content, even if the call is routed to 'No Match'.

12. In the 'Confidence Result' field, define a variable in the format ${var_name} to capture the
confidence score identified by the Automatic Speech Recognition (ASR) system. This score
can be utilized later to inform decision-making based on the obtained result.

13. Enable the 'Play Beep' option by selecting the corresponding check box. This triggers the
playing of a beep sound before the system begins to collect the user's response.

14. Click OK, and then Save.

Collect Digits

'Collect Digits' building blocks enable you to offer callers the option to enter multiple DTMF
digits in response to a prompt. Additionally, as an admin, you can enable ASR (Automatic
Speech Recognition), further enhancing the overall flexibility and experience for callers.

- 28 -

CHAPTER 6 Building Blocks Voca | User's Manual

The 'Collect Digits' building block has 4 exit legs:

■ Success: When the system successfully collects all the spoken or dialed digits from the
caller, and the number of digits aligns with the criteria specified in the 'Min Digits' and 'Max
Digits' settings within the building block, the call is automatically routed through this leg.

■ Failure: If the system has gathered all the spoken or dialed digits from the caller but the
number of digits does not align with the criteria defined in the 'Min Digits' and 'Max Digits'
settings within the building block, the call is automatically directed through this leg.

■ Timeout: If the system is unable to recognize input from the caller, whether it's DTMF or
speech, and the maximum number of allowed retries has been reached, the call will be
automatically directed through this leg.

■ No Match: When the confidence result of the speech recognition is '0', the system will
intelligently route the call to 'No Match'. This leg is only applicable after enabling the
'Collect Speech Input'.

➢ To use the Collect Digits building block:

1. On the left pane, under Interactions, click Collect Digits; the following Collect Digits
building block appears:

2. Click the icon; the following appears:

- 29 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Prompt Type' drop-down list, select the appropriate prompt type:

● User Prompt: Gives you the capability to designate a specific fixed prompt that will
unfailingly play whenever a call is directed through the Speech Input building block.

When selected, an additional field called "Prompt" becomes available. This field
empowers you to specify the prompt you want to utilize when the call is routed
through the Speech Input building block.

● Dynamic Prompt: Gives you the flexibility to dynamically adjust the prompt based on
previous actions taken by the caller within the flow. When selected, an additional field
called "Value" becomes available. This field allows you to specify the name of your
prompt as it appears in the system prompt list, using a variable.

If the specified prompt is not found, the following message appears: "We are
experiencing system issues. Please call back later." The call will then be
disconnected.

Example:

- 30 -

CHAPTER 6 Building Blocks Voca | User's Manual

If you have a single flow that can be triggered from different DID numbers, and you want to
change the prompt based on the dialed number. To achieve this, you can configure a
“Conditions” building block (see Conditions building block for more information) before
running the Speech Input building block. This condition block will check the DID number
and route the call to the 'Set Variables' building block accordingly (refer to the Set Variable
building block for more information). The 'Set Variables' block will store the prompt name.
This variable can then be used to play distinct prompts for different DID numbers, providing
dynamic caller experiences.

5. In the 'Min Digits' field, specify the minimum number of digits to be collected, ranging from
1 to 30 digits.

6. In the 'Max Digits' field, enter the maximum number of digits to be collected, between 1 to
30 digits. Verify that this number is higher than the 'Min Digits' setting.

7. From the 'Termination Key' drop-down list, select the appropriate termination key type:

● 'None': The system will automatically stop collecting digits when the interdigit timeout
parameter is reached, and no termination key is required.

● '*': To stop digit collection, the caller can simply press the '*' key.

● '#': To stop digit collection, the caller can simply press the '#' key.

8. In the 'Max Wait Time' setting, specify the maximum duration for awaiting user input. This
duration can be set between 1 to 45 seconds. The default is 20 seconds.

The Automatic Speech Recognition (ASR) system can record audio for a maximum of
1 minute. If the combined length of the prompt and the maximum wait time exceeds
one minute, the system will proceed to the next building block after the one-minute
mark.

9. In the 'Interdigit Timeout (sec)' field, specify the permissible waiting time between digits,
from 1 to 30 seconds. The default is 2 seconds.

10. In the 'Retries' field, specify the maximum number of retries to repeat the block if DTMF
input is not detected, between 1 and 10. The default is 3 retries.

11. In the 'Collected Digit Result' field, specify a variable in the format ${var_name} to store the
speech input/DTMF keys result. If the call is routed through the 'No Match', the system will
automatically replace the collected digit result with "No Match."

- 31 -

CHAPTER 6 Building Blocks Voca | User's Manual

12. In the 'Collect Speech Input' toggle, choose whether to enable or disable the ASR capability
for this block. When the toggle is enabled, two new fields and two additional checkboxes
are added to the building block:

● 'Speech Barge-In' checkbox: Activating this checkbox grants your callers the ability to
interrupt the prompt mid-way using either speech or DTMF input, eliminating the
necessity to wait for the prompt to finish.

● 'Transcription Result' field: Designate a variable in the format ${var_name} to store
the original speech input result before any system processing takes place. This variable
allows you to access the original speech input content, even if the call is routed
through 'No Match'.

● 'Confidence Result' field: Define a variable in the format ${var_name} to capture the
confidence score identified by the Automatic Speech Recognition (ASR) system. This
score can be utilized later to inform decision-making based on the obtained result.

● 'Play Beep' checkbox: Activating this checkbox will trigger the playing of a beep sound
before the system begins to collect the user's response.

13. Click OK, and then Save.

Play Prompt

'Play Prompt' allows you to integrate audio prompts into your workflows. It gives you the
flexibility to play a single prompt or blend multiple prompts together, enabling the creation of
dynamic and engaging interactions.

In the 'Play Prompt' building block, a single pathway, referred to as 'Next Node', is available.
After the prompt’s playback, the system will automatically guide the call to 'Next Node'.

➢ To use the Play Prompt building block:

1. On the left pane, under Interactions, click Play Prompt; the following Play Prompt building
block appears:

2. Click the icon; the following appears:

- 32 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block, (up to 50 characters).

4. From the 'Prompt Type' drop-down list, select the appropriate prompt type:

● User Prompt: Select from a drop-down menu containing pre-configured prompts.

● Play Date: The system will read the complete date you entered it out loud. The
anticipated format for input in the value field is "yyyy-MM-dd.

For example, if you entered the value: "2023-11-20" the system will play: 'November
twenty, two thousand twenty-three. '

● Play Day of the Week: The system will read out loud the day of the week
corresponding to the date entered. Ensure that the date is provided in the expected
format: "yyyy-MM-dd"

For example, if you entered the following value: "2023-11-20" the system will play:
'Sunday. '

● Play Day in Month: The system will read out loud the day of the month corresponding
to the date entered. Ensure that the date is provided in the expected format: "yyyy-
MM-dd"

For example, if you entered the following value: "2023-11-20" the system will play:
'twenty. '

● Play Month: The system will read out loud the month corresponding to the date
entered in the value field. Ensure that the date is provided in the expected format:
"yyyy-MM-dd"

For example, if you entered the following value: "2023-11-20" the system will play:
'November. '

● Play Year: The system will read out loud the year corresponding to the date entered in
the value field. Please ensure that the date is provided in the expected format: "yyyy-
MM-dd"

For example, if you entered the following value: "2023-11-20" the system will play:
'two thousand twenty-three. '

● Play Number: The system will read out loud the number exactly as entered, treating it
as a whole number.

For example, if you entered the following value: "543" the system will play: 'Five
hundred and forty-three. '

- 33 -

CHAPTER 6 Building Blocks Voca | User's Manual

● Digit by Digit: The system will read out loud the number entered in the field digit by
digit, rather than reading it as a whole number.

For example, if you entered the following value: "543" the system will play: 'Five, four,
three. '

● Play Ordinal Number: The system will read out loud the number entered as an ordinal
number, such as "first," "second," "third," and so forth.

For example, if you entered the following value: "2" the system will play: 'Second.'.

● Play Time: The system will read out loud the time in a 12-hour format without seconds.
Make sure that the time provided is in 24hour format: "HH:mm".

For example, if you enter the value "22:43", the system will announce it as 'Ten, forty-
three PM.'

● Play Time with Seconds: The system will read out loud the time in a 12-hour format
with seconds. Make sure that the time is provided is in a 24 hour format: "HH:mm:ss".

For example, if you entered the value "22:43:53", the system will announce it as 'Ten,
forty-three and fifty-three PM. '

● Dynamic Prompt: Gives you the flexibility to dynamically adjust the prompt based on
previous actions taken by the caller within the flow. When selected, an additional field
called "Value" becomes available. This field allows you to specify the name of your
prompt as it appears in the system prompt list, using a variable.

For example, if you have a single flow that can be triggered from different DID
numbers, and you want to change the prompt based on the dialed number. To do this,
configure a “Conditions” building block (see Conditions building block for more
information) before running the Speech Input building block. This condition block will
check the DID number and route the call to the 'Set Variables' building block
accordingly (see Set Variable building block for more information). The 'Set Variables'
block will store the prompt name. This variable can then be used to play distinct
prompts for different DID numbers, providing dynamic caller experiences.

5. In the 'Value' field, enter the value you want to play. This value can either be a variable
collected earlier in the flow or a static string configured directly in the 'Value' field.

6. Click the button to include additional prompts.

7. Click OK, and then Save.

Text-to-Speech

The 'Text-to-Speech' (TTS) building block enables the playback of text from a string that has
been inserted under this specific building block. By default, the language used for Text-to-
Speech is determined by the primary language associated with the tenant at the tenant level.

In this building block, you can combine a static string with variables that collected in the
workflow. These elements can be played back as a single prompt.

- 34 -

CHAPTER 6 Building Blocks Voca | User's Manual

In the 'Text-to-Speech' building block, a single pathway, referred to as 'Next Node', is available.
After selecting text to speech playback, the system will automatically guide the call to 'Next
Node'.

➢ To use the Text-to-Speech building block:

1. On the left pane, under Interactions, click Text-to-Speech; the following Text-to-Speech
building block appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block, (up to 50 characters).

4. In the 'Value' field, you can tailor the playback content according to your specific
requirements. This content can be a combination of variable data collected earlier in the
workflow, static strings configured directly within the 'Value' field, or a blend of both. This
flexibility allows you to create dynamic prompts that adapt to your application's needs.

For further details on creating dynamic content by combining variables and static strings,
seethe section String Expression.

Text-to-Speech limits the text to 500 characters when playing.

5. Click OK, and then Save.

- 35 -

CHAPTER 6 Building Blocks Voca | User's Manual

Actions
The following building blocks appear under Actions.

■ HTTP

■ Go To Menu

■ Transfer

■ Save Call Info

■ Go To Queue

■ Go To Destination

■ Go To Contact

■ Leave Message

■ Send SMS

■ Go To Flow

HTTP

The 'HTTP' building block offers a seamless avenue for integration, process automation, and
tailored customization, empowering you to engage with an array of systems and platforms. This
versatile building block extends the capability to integrate with third-party applications, such as
CRM systems, enabling real-time data retrieval and the execution of actions within your third-
party applications. It provides a robust framework to enhance your system's connectivity and
functionality.

The 'HTTP' building block has 3 exit legs:

■ Success: Indicates a successful transmission of a request from Voca and the subsequent
receipt of a response from the destination. Note that the success exit leg does not
necessarily indicate that there are no issues with the response, it just confirms that Voca
successfully received a response.

After a call resulted in success, you should utilize the Condition building block (see
Condition building block for more information) to ascertain whether the status code
received aligns with the expected status code. This step enables you to validate the
outcome of the request and make informed decisions based on the response status code.

■ Failure: Indicates an unsuccessful request sent from Voca. When a call is processed through
this leg, it indicates that there are issues with the request itself, such as an invalid URL, an
improperly formatted body, or invalid headers, etc...

This serves as an indicator that the request could not be successfully initiated due to a
specific issue on the request side.

■ Timeout: Indicates Voca successfully transmitted a request; however, it did not receive any
response from the destination. This signifies a situation where the request was sent, but
there was no corresponding response received within the expected time frame.

- 36 -

CHAPTER 6 Building Blocks Voca | User's Manual

➢ To use the HTTP building block:

1. On the left pane, under Actions, click HTTP; the following HTTP building block appears:

2. Click the icon; the following appears:

3. Select the Specific tab, and then configure the following:

a. In the 'Description' field, enter a description for this building block (up to 50
characters).

b. From the 'Request Type' drop-down list, select the appropriate type of request:

◆ Get

◆ Post

c. In the 'URL' field, enter the destination URL. Note, this URL can take the form of a static
string, a variable, or an expression that dynamically computes the appropriate REST

- 37 -

CHAPTER 6 Building Blocks Voca | User's Manual

address during runtime. When opting for a static string, there is no requirement to
enclose it within quotation marks at both the start and end of the value.

d. To disregard the SSL certificate, select the 'Ignore SSL Certificate' check box. This is
relevant for self-signed certificates. However, exercise caution when utilizing this
option.

e. In the 'Timeout' field, specify the maximum timeout duration in seconds for the
request, ranging from 1 to 60 seconds. Once this predetermined time limit is reached,
the call will be routed to the 'Timeout’. The default is 20 seconds.

f. In the 'Response Body Result' field, specify a variable in the format ${var_name} to
store the received response. The response will be automatically converted into a string
and assigned to the specified variable.

g. In the 'Status Code Result' field, specify a variable in the format ${var_name} capture
the returned status code.

h. In the 'Status Message Result' field, specify a variable in the format ${var_name} to
capture the returned status message.

4. Navigate to the Content tab and configure the following settings. This screen will only
appear if you are using a GET request:

a. Click the Add Param icon to add a parameter.

b. In the 'Key' field, enter the header key, excluding quotation marks.

c. In the 'Value', enter the values as a static string, a variable, or an expression that
dynamically computes the appropriate header value during runtime.

d. Click the Add Param icon to add more parameters.

5. Navigate to the Content tab and configure the following settings. This screen will only
appear if you are using a POST request:

- 38 -

CHAPTER 6 Building Blocks Voca | User's Manual

a. From the 'Content Type' drop-down list, select the appropriate content type:

◆ Application/json

◆ Text/plain

b. In the 'Body' field, you have the flexibility to define the content you want to include in
the HTTP requests. There are two primary options available for formatting the body
content:

◆ JSON Payload: you can input a static JSON payload for transmission. This involves
defining a fixed JSON structure with specific key-value pairs. The provided JSON
remains constant in the request.

◆ Expression (String Format): Alternatively, you can enter an expression in string
format. This option allows you the insertion of dynamic content from the workflow
into the HTTP request body.

When incorporating variables into your JSON body, the JSON content should be
provided as a string rather than as a structured JSON payload.

For details how to use the HTTP request body using these options, see Creating a body for
HTTP Request.

6. Select the Headers tab, and then configure the following:

a. Click the Add Header icon to add a header.

b. In the 'Header Name' field, enter the header key, excluding quotation marks.

c. In the 'Value' field, enter the values as a static string, a variable, or an expression that
dynamically computes the appropriate header value during runtime.

d. Click the Add Header icon to more headers.

- 39 -

CHAPTER 6 Building Blocks Voca | User's Manual

7. Click OK, and then Save.

➢ To create a body for HTTP Request:

■ JSON Payload: If you want to send a static JSON payload in the body of your HTTP request,
follow this format:

{
 "Key1": "Value1",

 "Key2": "Value2",
...

}

In this scenario, define the JSON structure with specific key-value pairs, and these values
remain constant in the request.

For example:

- 40 -

CHAPTER 6 Building Blocks Voca | User's Manual

■ Expression (String Format): When you need to insert dynamic variables from your
workflow into the HTTP request body, follow these steps:

a. Convert the JSON structure you expect to receive into a string format. Enclose the
entire JSON within quotation marks, like this:

"{
 \"Key1\": \"Value1\",
\"Key2\": \"Value2\",
 ...

}"

You can use any online JSON-to-string converter for this purpose.

Converting the JSON to a string format allows for additional manipulation and variable
insertion.

b. Replace the value with the variable that you want to use, using the following format,
including the quotation marks:

Original value Formatted value

Value1 " + ${var_name1} + "

Value2 " + ${var_name2} + "

Replace ${ var_name1} with the actual variable name you want to include. This syntax
ensures that the variable's value is dynamically inserted at runtime when the HTTP request
is made.

- 41 -

CHAPTER 6 Building Blocks Voca | User's Manual

"{
 \"Key1\": \"" + ${var_name1} + "\",
\"Key2\": \"" + ${var_name2} + "\",
 ...

}"

Example:

- 42 -

CHAPTER 6 Building Blocks Voca | User's Manual

Go To Menu

The 'Go To’ Menu' building block provides the capability to seamlessly redirect a call directly
from the call flow to a menu that is configured under 'Configuration -> Menu Setting' tab.

- 43 -

CHAPTER 6 Building Blocks Voca | User's Manual

➢ To use the Go To Menu building block:

1. On the left pane, under Actions, click Go To Menu; the following Go To Menu building
block appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Menu' drop-down list, select the appropriate menu.

5. Click OK, and then Save.

Transfer

The 'Transfer' building block allows you to execute either a blind transfer or an attended
transfer directly from the flow designer. Subsequently, you can initiate specific actions based on
the response received following the transfer operation.

The ‘Transfer’ block has different exit points depending on the chosen "Transfer Type.

■ Success: The transfer of the call to the designated destination was completed successfully.

■ No Answer: The call directed to the assigned destination remained unanswered beyond the
duration configured for the "No Answer Timeout" timer. This only appears when you use
"Transfer Type" mode during an attended transfer.

■ Busy: The designated destination was busy, and the call could not be transitioned. This exit
leg only appears when you use "Transfer Type" mode.

■ Failure: The attempt to transfer the call to the specified destination has failed.

- 44 -

CHAPTER 6 Building Blocks Voca | User's Manual

➢ To use the Transfer building block:

1. On the left pane, under Actions, click Transfer; the following Transfer building block
appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block, (up to 50 characters).

4. From the 'Transfer Type' drop-down list, select the appropriate type of transfer:

● Blind Transfer

● Attended

5. In the 'No Answer Timeout (Sec)' field, enter maximum time to wait for an answer (1 to 120
seconds). When the predetermined time limit is reached, the call is automatically
redirected to 'No Answer'. This field only appears if ‘Attend Transfer’ is selected.

- 45 -

CHAPTER 6 Building Blocks Voca | User's Manual

6. In the 'Destination' field, enter the destination number for the transfer operation. This
destination can either be a variable collected earlier in the flow or a static string directly
configured in the 'Destination' field.

7. Click OK, and then Save.

Worker Application

The 'Worker Application' building block enables you to collect data from the call flow and
seamlessly provide this information to your workers when they handle calls through the Skill-
Based Routing queue. In addition, you can configure a CRM screen pop-up within the 'Worker
Application' block. This feature allows Voca workers to access and update CRM data in real-time
within the Voca Worker Application, all within a unified interface.

To enable the CRM screen pop-up feature, your CRM system must support iframes. The CRM
screen pop-up functionality relies on the ability to embed content within an iframe, allowing
seamless integration of CRM data into the Voca Worker Application.

In the 'Worker Application' building block, you have access to a single pathway called 'Next
Node'. When the system has completed the process of saving all collected data, it will direct the
call to 'Next Node'.

➢ To use the Worker Application Info building block:

1. On the left pane, under Actions, clickWorker Application; the following Worker
Application building block appears:

2. Click the icon; the following appears:

- 46 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. In the 'Parameter Name' field, enter the name of the field that will be displayed to the
worker after they answer the call.

5. In the 'Expression' field, enter the value corresponding to the field configured in the
'Parameter Name.' This value can either be a previously collected variable within the flow
or a static string.

6. In the 'Widget Name' field, enter the name of your CRM system. This name will be
displayed at the top of the CRM screen for the worker after they answer the call.

7. In the 'URL' field, enter the URL of your CRM system. Note, this URL can be either a static
string, a variable, or an expression.

Static strings don't need quotation marks.

8. Click the button to include additional parameters.

9. Click OK, and then Save.

Go To Queue

The 'Go To Queue' building block allows you to redirect a call directly from the call flow to a
queues that configured under the 'Configuration -> Routing -> Queues' tab.

In the 'Go To Queue' building block, you are provided access to a singular route called 'Next
Node'. Following the system's call transfer to the designated queue, you can configure
supplementary actions that do not require user interaction, such as initiating an HTTP Request
or sending an SMS message.

➢ To use the Go To Queue building block:

1. On the left pane, under Actions, click Go To Queue; the following Go To Queue building
block appears:

2. Click the icon; the following appears:

- 47 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Queue Type' drop-down list, select the appropriate type of queue:

● Queue

● Skill-based Routing Queue

5. From the 'Queue Name' drop-down list, select the appropriate queue name.

6. From the 'Skills' drop-down list, select the appropriate skill when transferring a call to a
queue. When the call reaches the queue, the system will automatically search for an
available worker with all the specified skills from the building block. Note this option is only
displayed when the 'Skill-Based Routing Queue' is selected, ensuring that calls are directed
to the most qualified workers.

7. From the 'Call Priority' drop-down menu, administrators can designate the call priority for
incoming calls. This allows administrators to implement a tiered priority system,
guaranteeing the swift handling of critical or high-value calls. Prioritization operates on a
numerical scale, where a higher priority value corresponds to increased precedence in the
call queue. The default priority level is '1,' but administrators can adjust this priority level
up to '10'.

8. Click OK, and then Save.

Go To Destination

The 'Go To Destination' building block provides the capability to redirect a call directly from the
call flow to a Departments/Contact on the system.

The Go To Destination" block's exit leg depends on ‘Transfer Type’ mode:

■ Success: Indicates the transfer of the call to the designated destination was completed
successfully.

■ No Answer: Indicates the call directed to the assigned destination remained unanswered
beyond the duration configured for the "No Answer Timeout" timer. This exit leg only
appears when you use ‘Transfer Type’ mode during an attended transfer.

- 48 -

CHAPTER 6 Building Blocks Voca | User's Manual

■ Busy: Indicates the designated destination was busy, and the call could not be transitioned.
This exit leg only appears when you use "Transfer Type" mode during an attended transfer.

■ Failure: Indicates the attempt to transfer the call to the specified destination has failed.

➢ To use the Go To Destination building block:

1. On the left pane, under Actions, click Go To Destination; the following Go To Destination
building block appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Transfer Type' drop-down list, select the appropriate type of transfer:

● Blind Transfer: When the system has successfully routed the call to the designated
department, it runs configured actions within the department (unless the transfer
fails).

● Attended Transfer: Select this option when the department's configured action falls
into one of the following categories: 'Transfer to Phone,' 'Silent Transfer to Phone,' or
'Transfer to Extension.' As an administrator, you seek the capability to perform
supplementary actions within the same call flow after the transfer process has
concluded.

- 49 -

CHAPTER 6 Building Blocks Voca | User's Manual

5. In the 'No Answer Timeout (Sec)' field, enter maximum time to wait for an answer (1 to 120
seconds). When the predetermined time limit is reached, the call is automatically
redirected to 'No Answer'. This field only appears if ‘Attend Transfer’ is selected.

6. From the 'Destination Type' drop-down list, select the appropriate destination type:

● Destination List: You can select a specific department from a predefined dictionary.
When selected, two additional fields become available:

◆ 'Dictionary'.

◆ 'Department'

● Dynamic Destination: Allows you to dynamically adjust the department destination
based on caller interactions leading up to this stage. Enter a variable that holds the
department ID from your tenant. When selected, an additional field becomes available:

- 50 -

CHAPTER 6 Building Blocks Voca | User's Manual

7. In the 'Entity Unique ID' field, enter the department's unique identifier. This value can be
derived from a variable gathered earlier in the workflow, such as through speech input, or
it can be a fixed string configured directly in the 'Value' field.

For example:

If you've previously utilized the Speech Input building block in destination dictionary mode
in your workflow and stored the result as a variable named ${var_name}, you can utilize the
GetJsonValue function (for more details, see GetJsonValue function) to route the call to the
relevant department.

8. Use the 'Silent Transfer' toggle, to enable or disable the default prompt, "Transferring the
call to...", before initiating the call transfer to the destination.

9. Click OK, and then Save.

Go To Contact

The 'Go To Contact' building block allows you to redirect a call directly from the call flow to a
contacts that configured under the 'Contacts' tab.

The 'Go To Contact' building block have 3 exit legs:

■ No Answer: Indicates the call directed to the assigned destination remained unanswered
beyond the duration configured for the "No Answer Timeout" timer. This exit leg only
appears when you use "Transfer Type" mode during an attended transfer.

■ Busy: Indicates the designated destination was busy, and the call could not be transitioned.

■ Failure: Indicates the attempt to transfer the call to the specified destination has failed.

➢ To use the Go To Contact building block:

1. On the left pane, under Actions, click Go To Contact; the following Go To Contact building
block appears:

2. Click the icon; the following appears:

- 51 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the Contact Type' drop-down list, select the appropriate contact type:

● Contact List: The system allows you to select a specific contact from the contact list.
When selected, an additional field becomes available.

● Dynamic Contact: This Contact type provides the versatility to dynamically adjust the
contact destination based on caller interactions leading up to this stage. In the value
field, you can input a variable that holds the contact ID from your tenant. When
selected, an additional field becomes available.

5. In the 'Entity Unique ID' field, enter the contact's unique identifier. This value can be
derived from a variable gathered earlier in the workflow, such as through speech input, or
it can be a fixed string configured directly in the 'Value' field.

For example:

If you've previously utilized the Speech Input building block in destination dictionary mode
within your workflow and stored the result as a variable named ${var_name}, you can
utilize the GetJsonValue function (for more details, see GetJsonValue function) to route the
call to the relevant department.

6. Use the 'Allow Transfer To Mobile' toggle, to activate or deactivate the capability to route
calls to the mobile phones of your contacts.

7. Use the 'Silent Transfer' toggle, to enable or disable the default prompt, "Transferring the
call to...s", before initiating the call transfer to the contact.

- 52 -

CHAPTER 6 Building Blocks Voca | User's Manual

8. Click OK, and then Save.

Leave Message

The 'Leave Message' building block gives you the ability to offer your customers the option to
leave a message that will be transmitted via email. The system permits you to play a prompt,
followed by recording the customer's message and sending it as an email attachment.

The "Leave Message" building block requires Voca to be integrated with an SMTP server.

The 'Leave Message' building block has two exit legs:

■ Success: Indicates the email server has successfully received the request to send the email
to the recipient.

■ Failure: Indicates the email server did not successfully receive the request to send the
email to the recipient.

➢ To use the Leave Message building block:

1. On the left pane, under Actions, click Leave Message; the following Leave Message
building block appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Prompt' drop-down list, select the appropriate prompt.

5. In the 'Email' field, enter the email address enclosed in quotation marks. This designated
email address will be the recipient of the message along with the recording attachment.

- 53 -

CHAPTER 6 Building Blocks Voca | User's Manual

The 'Email' field can be a static string, a variable, or an expression that dynamically
computes the appropriate recipient address during runtime.

6. Click OK, and then Save.

Send SMS

The 'Send SMS' building block grants you the capability to send SMS to your customers during
the call flow.

The " Send SMS " building block requires Voca to be integrated with an SMTP server.

The 'Send SMS' building block have two exit legs:

■ Success: Indicates the SMS server has successfully received the request to send the SMS
message to the recipient.

■ Failure: Indicates the SMS server did not successfully receive the request to send the SMS
message to the recipient.

➢ To use the Send SMS building block:

1. On the left pane, under Actions, click Send SMS; the following Send SMS building block
appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

- 54 -

CHAPTER 6 Building Blocks Voca | User's Manual

4. In the 'From' field, enter the sender address from which the SMS will be sent. Make sure
that the sender address contains 1 to 11 alphanumeric characters or hyphens (-), without
quotes.

5. Enter the recipient's address in E164 format.

6. The 'To' field can be a static string, a variable, or an expression that dynamically computes
the appropriate recipient address during runtime.

7. In the 'Body' field, enter the content of the message that will be sent. The message content
must be surrounded by quotation marks.

8. Click OK, and then Save.

Go To Flow

The 'Go To Flow' building block provides administrators with the ability to establish distinct
boundaries between various call flows within the system while retaining all previously collected
information within the call flow. This functionality ensures that essential data and context
gathered earlier in the call process are seamlessly preserved as callers transition between
different stages of the call flow, promoting a coherent and efficient call handling experience.

➢ To use the Go To Flow building block:

1. On the left pane, under Actions, click Go To Flow; the following Go To Flow building block
appears:

2. Click the icon; the following appears:

- 55 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. From the 'Flow' drop-down list, select the appropriate flow.

5. From the 'Type' drop-down list, select the appropriate Type.

6. Click OK, and then Save.

Call-Flow Logic
The following building blocks appear under Call-Flow Logic:

■ Conditions building

■ Switch building

■ Counter building

■ Set Variable building

■ End building

Conditions

The 'Condition' building block serves as a fundamental element in our call flow system,
affording administrators fine-grained control over call routing. This building block assesses
conditions, yielding 'True' or 'False' results, and guides call routing accordingly. Administrators
can establish multiple conditional paths and specify the exit legs for each condition, allowing for
intricate routing configurations.

The 'Condition' building block has one exit leg:

- 56 -

CHAPTER 6 Building Blocks Voca | User's Manual

■ Default: When the system has evaluated all configured conditions, and the outcome of
each condition is 'False,' the call is automatically routed to this option.

➢ To use the Conditions building block:

1. On the left pane, under Call-Flow Logic, click Conditions; the following Conditions building
block appears:

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. In the 'Conditional Expression' field, enter the expression for evaluation.

● If the expression evaluated is 'True,' the node proceeds to the associated exit leg.

● If the expression evaluated is 'False,' the node checks the next evaluated expression.

● If no expression is evaluated to 'True', the node proceeds to the default exit leg.

For further details on creating 'Conditional Expression ', see Boolean Expression.

5. In the 'Next Node Name' field, enter the name for the output leg. The name should be
written without quotes. Use alphanumeric characters, underscores (_), and periods (.). It
must commence with a letter. The maximum length is 24 characters.

- 57 -

CHAPTER 6 Building Blocks Voca | User's Manual

6. Click the button to include additional conditions.

7. Click OK, and then Save.

Switch

The 'Switch' building block allows you to route program logic to various cases by evaluating a
specified expression. Administrators can define multiple values for comparison against the
expression and specify the corresponding exit leg, enabling the creation of complex routing
configurations.

The 'Switch' building block has one exit leg:

■ Default: The system evaluates all values against the expression, and none of them yield a
'True' outcome, the call is automatically routed to this designated leg.

➢ To use the Switch building block:

1. On the left pane, under Call-Flow Logic, click Switch; the following Switch building block
appears:

2. Click the icon; the following appears:

- 58 -

CHAPTER 6 Building Blocks Voca | User's Manual

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. In the "Switch Expression" field, enter the expression that requires evaluation. The
resulting value is then compared with a predefined list of values.

● If a match is identified, the node proceeds along the corresponding path.

● If there is no match, the node proceeds to the default path.

Note, '0' is a valid option.

5. In the 'Compared Value' field, enter the value to be compared against the result obtained
from the 'Switch Expression.

6. In the 'Next Node Name' field, enter the name for the output leg. The name should be
written without quotes. Use alphanumeric characters, underscores (_), and periods (.). It
must commence with a letter. The maximum length is 24 characters.

7. Click the button to add additional conditions.

8. Click OK, and then Save.

Counter

The 'Counter' building block lets you establish loops within your call flow. Loops start and end
at defined points and can repeat specific actions multiple times. When the loop finishes,
additional actions can be triggered.

The 'Counter' building block has four exit legs:

■ Init: Indicates the starting entry point to the building block. When you connect your
building block to this leg, the system automatically assigns the start index. The call will then
be directed to 'Next Step'.

■ Increment: Indicates the entry point for incrementing the index. When you connect your
building block to this leg, the system automatically retrieves the assigned index and
increases it by 1.

■ Next Step: Indicates an exit point when the current index is not yet equal to the end index.

■ Done: Indicates an exit point when the current index is equal to the end index.

➢ To use the Counter building block:

1. On the left pane, under Call-Flow Logic, click Counter; the following Counter building block
appears:

- 59 -

CHAPTER 6 Building Blocks Voca | User's Manual

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. In the 'Start Index' field, enter the initial index value to be assigned when the 'Init' path is
activated within the counter building block.

5. In the 'End Index' field, enter the index that will be compared against the index assigned to
the call when the call reaches the counter building block.

6. Click OK, and then Save.

Set Variable

The 'Set Variable' building block allows you to configure variables for later use in your call flow.

The 'Set Variable' building block has one exit leg:

■ Next Node: This is triggered when the system has completed the evaluation of all
expressions and stored them as variables.

➢ To use the Set Variable building block:

1. On the left pane, under Call-Flow Logic, click Set Variable; the following Set Variable
building block appears:

- 60 -

CHAPTER 6 Building Blocks Voca | User's Manual

2. Click the icon; the following appears:

3. In the 'Description' field, enter a description for this building block (up to 50 characters).

4. In the 'Variable Name' field, enter the variable name in the format ${var_name}. Note,
when using the variable later in your workflow, it is case-sensitive manner. This means the
search treats upper and lowercase letters differently, and any disparity may result in
potential issues.

5. In the 'Expression' field, enter the expression to be evaluated.

6. Click the button to add more variables.

7. Click OK, and then Save.

End

The ‘End’ building block represents the end point of the flow.

➢ To use the End building block:

1. On the left pane, under Call-Flow Logic, click End; the following End building block appears:

- 61 -

CHAPTER 6 Building Blocks Voca | User's Manual

- 62 -

CHAPTER 7 Save Voca | User's Manual

7 Save
The procedure below describes how to save a script.

➢ To save a script:

1. On the lower-right part of the main flow designer workspace, click the ellipsis icon (three
dots), and then click Save.

A CHECK SCRIPT validation window appears on the lower part of the screen to display script
errors (if any). This feature allows you to easily locate errors and fix them.

- 63 -

CHAPTER 8 Search Voca | User's Manual

8 Search
The procedure below describes how to use the Search engine.

➢ To use the Search engine:

1. From the Navigation pane, click Flow Designer; the Flow Designer page opens:

2. Select the script you want to edit, by clicking the corresponding plus box; the edit link
appears under the selected script:

3. Click edit; the main flow designer workspace appears:

4. In the 'Search' field, enter the search string you are looking for, and then press Enter; the
building block containing the search string is highlighted. In the example below, the
building block containing the search string "Dave", is highlighted.

- 64 -

CHAPTER 8 Search Voca | User's Manual

- 65 -

This page is intentionally left blank.

CHAPTER 8 Search Voca | User's Manual

- 66 -

International Headquarters

6 Ofra Haza Street

Naimi Park

Or Yehuda, 6032303, Israel

Tel: +972-3-976-4000

Fax: +972-3-976-4040

AudioCodes Inc.

80 Kingsbridge Rd

Piscataway, NJ 08854, USA

Tel: +1-732-469-0880

Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide

Website: https://www.audiocodes.com/

Documentation Feedback: https://online.audiocodes.com/documentation-
feedback

©2024 AudioCodes Ltd.. All rights reserved. AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia,
Mediant, MediaPack, What’s Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VoIPer-
fect, VoIPerfectHD, Your Gateway To VoIP, 3GX, VocaNom, AudioCodes One Voice, AudioCodes Meeting
Insights, and AudioCodes Room Experience are trademarks or registered trademarks of AudioCodes Lim-
ited. All other products or trademarks are property of their respective owners. Product specifications
are subject to change without notice.

Document #: LTRT-12991

http://https//www.audiocodes.com/corporate/offices-worldwide
http://https//www.audiocodes.com/
https://online.audiocodes.com/documentation-feedback
https://online.audiocodes.com/documentation-feedback

	Voca Interaction Center Flow Designer User's Manual Ver. 11.0
	Notice
	Security Vulnerabilities
	Customer Support
	Documentation Feedback
	Stay in the Loop with AudioCodes
	Related Documentation
	Document Revision Record

	Table of Contents
	1 Introduction
	2 Accessing Flow Designer
	Adding a New Flow
	Editing a Flow
	Deleting a Flow

	3 Variable Syntax
	Predefined Variables

	4 Expressions
	Arithmetic
	String
	Boolean

	5 Supported Functions
	Contains
	Date
	DateConvert
	DateParse
	GetJsonValue
	Length
	Lower
	Now
	NowUtc
	Replace
	SubString
	Trim
	Upper
	WeekDay

	6 Building Blocks
	Interactions
	Speech Input
	DTMF Menu
	Without Speech
	With Speech

	Collect Digits
	Play Prompt
	Text-to-Speech

	Actions
	HTTP
	Go To Menu
	Transfer
	Worker Application
	Go To Queue
	Go To Destination
	Go To Contact
	Leave Message
	Send SMS
	Go To Flow

	Call-Flow Logic
	Conditions
	Switch
	Counter
	Set Variable
	End

	7 Save
	8 Search

